Pyrido [$\left.3^{\prime \prime}, 2^{\prime \prime}: 4^{\prime}, 5^{\prime}\right]$ thieno $\left[3^{\prime}, 2^{\prime}: 4,5\right]$ pyrimido[1,6- a]benzimidazoles

 and Related Fused SystemsE. A. Bakhite*
Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt

A. G. Al-Sehemi
Department of Chemistry, Teachers College at Abha, B.O.Box. 249, Saudi Arabia

Y. Yamada*
Department of Chemistry, Faculty of Education, Utsunomiya University, Utsunomiya 321-8505, Japan Received December 6, 2004

3-Amino-4-aryl-5-ethoxycarbonyl-6-methylthieno[2,3-b]pyridine-2-carboxamides 3a-c were prepared from ethyl 4-aryl-3-cyano-6-methyl-2-thioxo-1,2-dihydropyridine-5-carbonylates 1a-c and reacted with some carbonyl compounds to give tetrahydropyridothienopyrimidine derivatives $\mathbf{6 a - c}$, $\mathbf{7 a}$-c and $\mathbf{8 a - c}$, respectively. Treatment of compound $\mathbf{3 c}$ with chloroacetyl chloride led to the formation of a next key compound, ethyl 2-chloromethyl-4-oxo-3,4-dihydropyrido[3',2':4,5]thieno[3,2- d]pyrimidine-8-carboxylate 9 . Also, 3-amino-2-benzimidazolylthieno[2,3-b]pyridine-5-carboxylate 5 and 2-(3'-aminothieno [2,3$b]$ pyridin-2'-yl)-4-oxo-3,4-dihydropyrido[$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ thieno[$\left.3,2-d\right]$ pyrimidine-8-carboxylate $\mathbf{1 7}$ were prepared from 1c. The compounds $\mathbf{5}, \mathbf{9}$ and $\mathbf{1 7}$ were used as good synthons for other pyridothienopyrimidines and pyridothienopyrimidobenzimidazoles as well as for related fused polyheterocyclic systems.
J. Heterocyclic Chem., 42, 1069 (2005).

The biological activities of condensed pyrimidines as sedatives, antibacterials and antimalarials are well documented [1,2]. Numerous thieno[2,3-b]pyridines have been investigated in relation with their biological and pharmacological activities. Some of them proved to possess antibacterial [3,4], antiviral [5], antihypertensive [6] and immunostimulating [7] activities. Others are useful as gonadtropinreleasing hormone antagonists [8-13] and as lipoxygenase inhibitors [14]. Recently, certain thieno[2,3-b]pyridine
derivatives were prepared as antinflammatory agents, particularly for treating arthritis and bone resorption inhibiting agents [15]. Pyridothienopyrimidine derivatives have been found in applications as analgesics [16], antipyretics [17] and anti-inflammatories [18]. Encouraged by all these facts and as a continuation of our program directed towards the synthesis of new condensed thieno[2,3-b]pyridines [19-21], we undertook the synthesis of the title compounds which may show good biological and medical applications.

The reaction of ethyl 4-aryl-3-cyano-6-methyl-2-thioxo-1,2-dihydropyridine-5-carbonylates 1a-c [22] with chloroacetamide in the presence of sodium acetate gave 4-aryl-3-cyanopyridin-2-ylthioacetamides 2a-c. Upon treatment of these compounds with sodium ethoxide in ethanol, they underwent intramolecular Thorpe-Ziegler cyclization to give 3-amino-4-arylthieno[2,3-b]pyridine-2-carboxamides 3a-c. Similarly, the reaction of 1c with 2-chloromethyl1 H -benzimidazole led to the formation of benzimidazolyl derivative 4. The latter compound was cyclized into ethyl 3-amino-2-(1'H-2'-benzimidazolyl)-4-(4'-chlorophenyl)-6-methylthieno[2,3-b]pyridine-5-carboxylate (5) upon treatment with sodium ethoxide (Scheme 1).

The compounds 3a-c and $\mathbf{5}$ were used as starting compounds in this investigation. Thus, refluxing of vicaminoamides 3a-c with 4-chlorobenzaldehyde in acetic acid or in ethanol containing a few drops of concentrated hydrochloric acid afforded the corresponding tetrahdyropyridothienopyrimidines 6a-c. Upon treatment of 3a-c with cyclopentanone and with cyclohexanone under the same conditions, the products were respectively identified as spiro compounds 7a-c and 8a-c, rather than Schiff's bases [23] (Scheme 2).

The cyclocondensation of $\mathbf{3 c}$ with chloroacetyl chloride resulted in the formation of ethyl 2-chloromethyl-9-(4'-chlorophenyl)-7-methyl-4-oxo-3,4-dihydropyrido[3',2':4,5]-

Scheme 2

(i) 4-chlorobenzaldehyde/ AcOH or $\mathrm{EtOH}-\mathrm{HCl}$
(ii) cyclopentanone or cyclohexanone $/ \mathrm{AcOH}$ or $\mathrm{EtOH}-\mathrm{HCl}$

Scheme 3

13
12
thieno[3,2- d] pyrimidine-8-carboxylate (9) which proved to be a good synthon for other pyridothienopyrimidine derivatives as well as for related polycyclic systems. Thus, the reaction of $\mathbf{9}$ with morpholine and with sodium ethoxide gave the corresponding pyrimidinone derivatives $\mathbf{1 0}$ and $\mathbf{1 1}$, respectively. The interaction of $\mathbf{9}$ with thiourea produced an adduct which upon treatment with sodium hydroxide followed by acidification with acetic acid furnished the mercaptomethylpyrimidinone derivative 12 . Heating of compound 9 with an excess amount of phosphorous oxychloride afforded the dichloro derivative $\mathbf{1 3}$ (Scheme 3).

Preferential replacement of a chlorine atom in 13 was not possible due to the equally mobile nature of both the chlorine atoms [24]. All such reactions led to the formation of disubstituted products. Thus, it gave ethyl 9-(4'-chloro-phenyl)-7-methyl-4-morpholino-2-morpholinomethylpyrido[$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ thieno[3,2- d]pyrimidine-8-carboxylate (14) with morpholine and ethyl 9-(4'-chlorophenyl)-7-methyl-2-mercaptomethyl-4-thioxo-3H-pyrido[3', $\left.2^{\prime}: 4,5\right]-$ thieno[3,2-d]pyrimidine-8-carboxylate (15) upon treatment with thiourea followed by heating the resulting product with sodium hydroxide and then acidified with acetic acid (Scheme 4).
compound underwent intramolecular Thorpe-Zeigler cyclization upon heating with sodium ethoxide in ethanol to furnished 2-(thieno[2,3-b]pyridin-2'-yl)-pyrido-[3',2':4,5]thieno[3',2'- d]pyrimidine- $4(3 H)$-one derivative 17 (Scheme 5).

Furthermore, compound 5, also having the γ-aminoimine structure, was used as the key intermediate for synthesizing some heterocyclic compounds containing both theino[2,3-b]pyridine and benzimidazole moieties. Thus, the reaction of 5 with triethyl orthoformate, acetic anhydride, 4-chlorobenzaldehyde and carbon disulfide led to the formation of pyrido[$\left.3^{\prime \prime}, 2^{\prime \prime}: 4^{\prime}, 5^{\prime}\right]$ thieno[$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ pyrim-ido[1,6-a] benzimidazoles 22, 23, 24 and 25, respectively. Treatment of $\mathbf{5}$ with nitrous acid resulted in diazotisation followed by the self coupling to give the corresponding pyrido[3", $\left.2^{\prime \prime}: 4^{\prime}, 5^{\prime}\right]$ thieno[$\left.3^{\prime}, 2^{\prime}: 4,5\right][1,2,3]$ triazino[1,6a]benzimidazole derivative 26 (Scheme 7).

In conclusion, 1,3-diamino compound 3 and 3aminoimine compound $\mathbf{5}$, investigated are good starting materials to construct fused polyheterocyclic system. And the reactive chloromethyl compound $\mathbf{9}$, thus obtained, has the advantage of a building block for complex heterocyclic compounds. Moreover, 3-aminoimine compound 17, pre-

Scheme 4

Scheme 5

Moreover, treatment of 2-chloromethylpyrimidinone 9 with the pyridine-2(1H)-thione $\mathbf{1 c}$ in refluxing ethanol containing sodium acetate, resulted in nucleophilic displacement reaction and formation of compound 16. This
pared by coupling reaction between $\mathbf{9}$ and $\mathbf{1}$, is a good synthon for more complex fused polyheterocyclic systems. The structural formulae of all compounds prepared were confirmed by elemental and spectral analyses.

Scheme 6

Scheme 7

EXPERIMENTAL

All melting points were determined on a Gallan-Kamp apparatus and are uncorrected. The ir spectra were recorded on a Shimadzu 470 IR-spectrophotometer (KBr). The ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra were taken on a Varian EM-390, 90 MHz spectrometer with TMS as internal standard. Mass spectra were recorded on either a JEOL JMS-600 spectrometer (Assiut University) or a JEOL AX500 spectrometer (Utsunomiya University). Elemental analyses were performed on an Elementar Analyses system GmbH VARIOEL V 2.31998 CHNS Mode.

Ethyl 4-Aryl-3-cyano-6-methyl-2-thioxo-1,2-dihydropyridine-5carbonylates 1a-c.

These compounds were prepared according to a reported procedure [22].

General Procedure for the Preparation of (4-Aryl-3-cyano-5-ethoxycarbonyl-6-methyl)pyridin-2-ylthioacetamides 2a-c.

To a suspension of compound $\mathbf{1 a - c}(0.02 \mathrm{~mol})$ and sodium acetate trihydrate ($3.0 \mathrm{~g}, 0.022 \mathrm{~mol}$) in ethanol (50 mL), chloroacetamide ($1.9 \mathrm{~g}, 0.02 \mathrm{~mol}$) was added. The resulting mixture was heated at reflux for 3 hours. The precipitate that formed on cooling was collected and recrystallized from ethanol.
(3-Cyano-5-ethoxycarbonyl-6-methyl-4-phenyl)pyridin-2-ylthioacetamide (2a)

This compound was obtained as colorless needles, mp 160-163 ${ }^{\circ} \mathrm{C}$, yield 96%, ir: $3400,3300\left(\mathrm{NH}_{2}\right), 2210(\mathrm{CN}) ; 1720,1670$ $(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 7.2-7.5(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH's}) ; 6.6$ (br, $\left.2 \mathrm{H}, \mathrm{NH}_{2}\right) ; 3.8-4.1\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right.$ and $\left.\mathrm{SCH}_{2}\right) ; 2.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at C-6); 0.7-0.9 (t, 3H, CH_{3} of ester); ms: m/z 355 ($\mathrm{M}^{+}, 46 \%$).
Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 60.83 ; \mathrm{H}, 4.82 ; \mathrm{N}, 11.83 ; \mathrm{S}$, 9.00. Found: C, 60.75; H, 4.90; N, 12.03; S, 9.19.
(3-Cyano-5-ethoxycarbonyl-4-(4'-methoxyphenyl)-6-methyl)pyridin-2-ylthioacetamide (2b).

This compound was obtained as colorless needles, mp 142$145{ }^{\circ} \mathrm{C}$, yield 95%, ir: $3400,3300\left(\mathrm{NH}_{2}\right), 2210(\mathrm{CN})$; $1720,1670(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 6.9-7.3$ (dd, 4 H , ArH's); 6.7 (br, $2 \mathrm{H}, \mathrm{NH}_{2}$); 3.8-4.2 (m, $7 \mathrm{H}: \mathrm{OCH}_{2}, \mathrm{SCH}_{2}$ and OCH_{3}); $2.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at C-6); 0.8-1.0 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$ of ester); ms: m/z 385 ($\mathrm{M}^{+}, 100 \%$).
Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 59.20 ; \mathrm{H}, 4.97 ; \mathrm{N}, 10.91 ; \mathrm{S}$, 8.30. Found:C, 59.32; H, 4.91; N, 11.11; S, 8.46.
(4-(4'-Chlorophenyl)-3-cyano-5-ethoxycarbonyl-6-methyl)-pyridin-2-ylthioacetamide (2c).

This compound was obtained as colorless needles, mp 161$162{ }^{\circ} \mathrm{C}$, yield 96%, ir: $3400,3300\left(\mathrm{NH}_{2}\right), 2210(\mathrm{CN})$; $1720,1670(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 7.3-7.6(\mathrm{dd}, 4 \mathrm{H}$, ArH 's); 6.8 (br, $2 \mathrm{H}, \mathrm{NH}_{2}$); 4.0-4.3 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{OCH}_{2}$ and SCH_{2}); 2.8 (s, 3H, CH ${ }_{3}$ at C-6); 0.9-1.2 (t, 3H, CH ${ }_{3}$ of ester); ms: m/z 389 ($\mathrm{M}^{+}, 100 \%$).
Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 55.52 ; \mathrm{H}, 4.14 ; \mathrm{N}, 10.80$; S, 8.22; Cl, 8.99. Found:C, 55.29 ; H, 4.26; N, 10.73; S, 8.35; Cl, 9.18

General Procedures for the Preparation of 3-Amino-4-aryl-5-ethoxycarbonyl-6-methylthieno[2,3-b]pyridine-2-carboxamides 3a-c.

Method A.

Compound 2a-c (0.01 mol) was suspended in sodium ethoxide solution (0.12 g of sodium in 30 mL of absolute ethanol) and then heated at reflux for 5 minutes. The solid that formed on cooling was collected and recrystallized from ethanol.

Method B.

To a suspension of compound 1a-c (0.01 mol) in sodium ethoxide solution (0.35 g sodium in 40 mL absolute ethanol), chloroacetamide ($0.94 \mathrm{~g}, 0.01 \mathrm{~mol}$) was added. The resulting mixture was refluxed for 20 minutes. The formed yellow precipitate was collected and recrystallized from ethanol to give yellow crystals of 3a-c. These products were identical to those described in method A in all aspects.

3-Amino-5-ethoxycarbonyl-6-methyl-4-phenylthieno[2,3b]pyridine-2-carboxamide (3a).

This compound was obtained as yellow crystals, mp 219-220 ${ }^{\circ} \mathrm{C}$, yield 93% (Method A), 81% (Method B), ir: 3490, 3450, 3300, $3200\left(2 \mathrm{NH}_{2}\right) ; 1720,1650(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO): $\delta 7.2-7.7\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CONH}_{2}\right.$ and ArH's); $5.7\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$ at $\mathrm{C}-3$); 3.9-4.2 (q, 2H, OCH_{2}); 2.6 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ at C-6); 0.7-1.0 (t, 3 H , CH_{3} of ester); ms: m/z $355\left(\mathrm{M}^{+}, 100 \%\right)$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 60.83 ; \mathrm{H}, 4.82$; $\mathrm{N}, 11.83 ; \mathrm{S}$, 9.00. Found:C, 60.55 ; H, 4.93; N, 11.61; S, 9.26.

3-Amino-5-ethoxycarbonyl-4-(4'-methoxyphenyl)-6-methylth-ieno[2,3-b] pyridine-2-carboxamide (3b).

This compound was obtained as yellow crystals, mp 214-215 ${ }^{\circ} \mathrm{C}$, yield 94% (Method A), 78\% (Method B), ir: 3490, 3450, 3300, $3200\left(2 \mathrm{NH}_{2}\right) ; 1720,1650(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO): $\delta 7.0-7.3\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CONH}_{2}\right.$ and ArH's); $5.6\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$ at $\left.\mathrm{C}-3\right)$; 3.9-4.2 (m, 5H, OCH_{2} and $\left.\mathrm{OCH}_{3}\right) ; 2.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}-6\right) ; 0.9-$ $1.1\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of ester); ms: m/z $385\left(\mathrm{M}^{+}, 100 \%\right)$.

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 59.20 ; \mathrm{H}, 4.97$; N, 10.91; S, 8.30. Found: C, $59.18 ; \mathrm{H}, 4.98$; N, 10.85; S, 8.25.

3-Amino-4-(4'-chlorophenyl)-5-ethoxycarbonyl-6-methylth-ieno[2,3-b]pyridine-2-carboxamide (3c).

This compound was obtained as yellow crystals, mp 219-220 ${ }^{\circ} \mathrm{C}$, yield 93%, (Method A), 83% (Method B), ir: 3490, 3450, 3300, $3200\left(2 \mathrm{NH}_{2}\right) ; 1720,1650(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO): $\delta 7.5-7.8$ (dd, 4H, ArH's); 7.3 (s, 2H, CONH2); 5.8 (s, 2H, NH_{2} at C-3); 4.0-4.3 (q, 2H, OCH 2); 2.7 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ at $\mathrm{C}-6$); 1.0-1.3 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$ of ester); ms: m/z $389\left(\mathrm{M}^{+}, 100 \%\right)$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 55.52 ; \mathrm{H}, 4.14 ; \mathrm{N}, 10.80$; S, 8.22; Cl, 8.99. Found: C, $55.51 ;$ H, $4.20 ;$ N, $10.89 ;$ S, $8.55 ; \mathrm{Cl}$, 9.32 .

Ethyl 2-(1'H-2'-Benzimidazolylmethylthio)-4-(4'-chlorophenyl)-3-cyano-6-methyl-2-thioxopyridine-5-carbonylate (4).

To a suspension of ethyl 4-(4'-chlorophenyl)-3-cyano-6-methyl-1,2-dihydropyridine-5-carboxylate (1c) ($6.66 \mathrm{~g}, 0.02 \mathrm{~mol}$) and sodium acetate trihydrate $(3.0 \mathrm{~g}, 0.022 \mathrm{~mol})$ in ethanol $(50 \mathrm{~mL})$, 2-chloromethyl- 1 H -benzimidazole ($3.3 \mathrm{~g}, 0.02 \mathrm{~mol}$) was added. The resulting mixture was heated at reflux for 3 hours. The precipitate that formed was collected and recrystallized from ethanol as colorless needles of $\mathbf{4}, \mathrm{mp} 159-160^{\circ} \mathrm{C}$, yield 88%; ir: $3300(\mathrm{NH}) ; 2200$ $(\mathrm{CN}), 1720(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 7.1-7.6(\mathrm{~m}, 8 \mathrm{H}$, ArH's); 4.4 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{SCH}_{2}$); 3.8-4.1 (q, 2H, OCH 2); 2.7 (s, 3H, CH_{3} at C-6), 0.8-1.1 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$ of ester); ms: m/z $462\left(\mathrm{M}^{+}, 96 \%\right)$.

Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 62.33 ; \mathrm{H}, 4.14 ; \mathrm{N}, 12.12$; S, 6.92; Cl, 7.57. Found: C, 62.20; H, 4.27; N, 12.21; S, 6.88; Cl, 7.78

Ethyl 3-Amino-2-(1'H-2'-benzimidazolyl)-4-(4'-chlorophenyl)-6-methylthieno [2,3-b]pyridine-5-carboxylate (5).

Compound $4(4.63 \mathrm{~g}, 0.01 \mathrm{~mol})$ was suspended in sodium ethoxide solution (0.24 g of sodium in 30 mL of absolute ethanol) and then heated at reflux for 5 minutes. The solid that formed on cooling and acidification with acetic acid was collected and recrystallized from ethanol to give yellow crystals of $\mathbf{5}, \mathrm{mp} 159-$ $160^{\circ} \mathrm{C}$, yield 88%; ir: $3480,3300,3200\left(\mathrm{NH}, \mathrm{NH}_{2}\right) ; 1720(\mathrm{C}=\mathrm{O})$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): 7.2-7.7$ (m, 8H, ArH's); 6.8 (br, 2H, NH_{2}); 3.9-4.2 ($\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2}$); $2.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at C-6), 0.8-1.1 (t , $3 \mathrm{H}, \mathrm{CH}_{3}$ of ester); ms: m/z $462\left(\mathrm{M}^{+}, 100 \%\right)$.
Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 62.33 ; \mathrm{H}, 4.14 ; \mathrm{N}, 12.12$; S, 6.92; Cl, 7.57. Found: C, 62.39; H, 4.20; N, 12.41; S, 7.14; Cl, 7.70.

General Procedure for the Preparation of Ethyl 9-Aryl-2-(4'-chlorophenyl)-7-methyl-4-oxo-1,2,3,4-tetrahydropyrido[$\left.3^{\prime}, 22^{\prime}: 4,5\right]$ thieno $\left.3,2-d\right]$ pyrimidine-8-carboxylates 6a-c.

A mixture of 3a-c $(0.002 \mathrm{~mol})$ and the respective aldehyde $(0.002 \mathrm{~mol})$ in glacial acetic acid $(15 \mathrm{~mL})$ or in ethanol $(20 \mathrm{~mL})$ containing few drops of concentrated hydrochloric acid was heated at reflux for 3 hours. The product was collected and recrystallized from acetic acid.
Ethyl 2-(4'-Chlorophenyl)-7-methyl-9-phenyl-4-oxo-1,2,3,4tetrahydropyrido [$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ thieno $[3,2-d]$ pyrimidine-8-carboxylate (6a).
This compound was obtained as yellow needles, mp 248-250 ${ }^{\circ} \mathrm{C}$, yield 87%, ir: $3400,3200(2 \mathrm{NH})$; 1720, $1650(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right): \delta 7.2-7.6(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}$'s); $6.0(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ at $\mathrm{C}-2) ;$ 4.1-4.4 (q, 2H, OCH_{2}); $2.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at C-7); 9.0-1.2 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$ of ester); ms: m/z $477\left(\mathrm{M}^{+}, 67 \%\right)$.

Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 62.88 ; \mathrm{H}, 4.22 ; \mathrm{N}, 8.81$; S, 6.70; Cl, 7.33. Found: C, $62.69 ; \mathrm{H}, 4.30 ; \mathrm{N}, 8.74 ; \mathrm{S}, 6.65 ; \mathrm{Cl}$, 7.55.

Ethyl 2-(4'-Chlorophenyl)-9-(4'-methoxyphenyl)-7-methyl-4-oxo-1,2,3,4-tetrahydropyrido[$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ thieno[3,2- d]pyrimidine8 -carboxylate ($\mathbf{6 b}$).
This compound was obtained as yellow needles, mp 242-243 ${ }^{\circ} \mathrm{C}$, yield 90%, ir: 3400, $3200(2 \mathrm{NH})$; 1720, $1650(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right): \delta 7.0-7.5(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}$'s); $6.0(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ at C-2); 4.1-4.4 (q, 2H, OCH 2); $3.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.1\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at C-7); 1.0-1.3 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$ of ester); ms: m/z $507\left(\mathrm{M}^{+}, 70 \%\right)$.

Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 61.53 ; \mathrm{H}, 4.37 ; \mathrm{N}, 8.28$; S, 6.30; Cl, 6.90. Found: C, 61.81; H, 4.44; N, 8.26; S, 6.19; Cl, 7.20.

Ethyl 2,9-Di(4'-chlorophenyl)-7-methyl-4-oxo-1,2,3,4-tetrahydropyrido $\left[3^{\prime}, 22^{\prime}: 4,5\right]$ thieno $[3,2-d]$ pyrimidine-8-carboxylate ($\mathbf{6 c}$).

This compound was obtained as yellow needles, mp 260-262 ${ }^{\circ} \mathrm{C}$, yield 88%, ir: $3400,3200(2 \mathrm{NH}) ; 1720,1650(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right): \delta 7.3-7.7$ (m, 8H, ArH's); $6.1(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ at $\mathrm{C}-2) ; 4.2-4.5\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right) ; 3.0\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}-7\right) ; 1.0-1.3(\mathrm{t}$, $3 \mathrm{H}, \mathrm{CH}_{3}$ of ester); ms: m/z $511\left(\mathrm{M}^{+}, 100 \%\right)$.
Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 58.70 ; \mathrm{H}, 3.75 ; \mathrm{N}, 8.22$; S, 6.26: Cl, 13.69. Found: C, 58.66; H, 3.70; N, 8.25; S, 6.17: Cl, 3.90.

General Procedure for the Preparation of Spiro Compounds 7a-c and 8a-c.

A mixture of 3a-c (0.002 mol) and cyclopentanone or cyclohexanone (0.002 mol) in glacial acetic acid (15 mL) or in ethanol $(20 \mathrm{~mL})$ containing a few drops of concentrated hydrochloric acid was heated at reflux for 3 hours. The product was collected and recrystallized from ethanol.
Ethyl 7-Methyl-9-phenyl-2,2-tetramethylene-4-oxo-1,2,3,4tetrahydropyrido [$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ thieno[3,2- d]pyrimidine-8-carboxylate (7a).

This compound was obtained as yellow needles, mp 272-273 ${ }^{\circ} \mathrm{C}$, yield 91%, ir: $3400,3200(2 \mathrm{NH})$; 1720, $1650(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 7.3-7.7(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH} \mathrm{s}) ; 6.6(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}) ;$ 4.0-4.3(q, 2H, OCH 2); 3.7 (s, 1H, NH); 2.7 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ at C-7); 1.7-2.0 (br, $6 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}$ of cyclopentylidene ring); $1.4(\mathrm{br}, 2 \mathrm{H}$, CH_{2} of cyclopentylidene ring); 1.1-1.3 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$ of ester); ms: m/z 421 ($\mathrm{M}^{+}, 70 \%$).

Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 65.54 ; \mathrm{H}, 5.50 ; \mathrm{N}, 9.97$; S, 7.59. Found: C, $65.48 ; \mathrm{H}, 5.69 ; \mathrm{N}, 10.15 ; \mathrm{S}, 7.76$.

Ethyl 9-(4'-Methoxyphenyl)-7-methyl-2,2-tetramethylene-4-oxo-1,2,3,4-tetrahydropyrido[$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ thieno $[3,2-d]$ pyrimidine8 -carboxylate (7b).

This compound was obtained as yellow needles, mp 278-279 ${ }^{\circ} \mathrm{C}$, yield 88%, ir: $3400,3200(2 \mathrm{NH}) ; 1720,1650(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$;
${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 7.3-7.6(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH's}) ; 6.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}) ;$ 4.0-4.3 (q, 2H, OCH_{2}); $3.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; 2.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}-7\right)$; 1.9-2.2 ($\mathrm{m}, 4 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2}$ of cyclohexylidene ring); 1.3-1.6 ($\mathrm{m}, 4 \mathrm{H}$, $\left(\mathrm{CH}_{2}\right)_{2}$ of cyclohexylidene ring); 1.1-1.3 ($\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of ester); $0.6-0.9$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$ of cyclohexylidene ring); ms: m/z $435\left(\mathrm{M}^{+}\right.$, 31%).

Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$: C, 66.18; H, 5.79; N, 9.65; S, 7.35. Found: C, $66.25 ;$ H, $5.98 ;$ N, $9.51 ; ~ S, ~ 7.53 . ~$

Ethyl 9-(4'-Chlorophenyl)-7-methyl-2,2-tetramethylene-4-oxo-1,2,3,4-tetrahydropyrido[3',2':4,5]thieno[3,2- d]pyrimidine-8carboxylate (7c).

This compound was obtained as yellow needles, mp 250-252 ${ }^{\circ} \mathrm{C}$, yield 92%, ir: $3400,3200(2 \mathrm{NH})$; 1720, $1650(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 7.1-7.4$ (dd, 4H, ArH's); 6.7 (s, 1H, CONH); 4.0-4.2 (q, 2H, OCH_{2}); 3.9 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$); 3.6 (s, $1 \mathrm{H}, \mathrm{NH}$); 2.7 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ at $\mathrm{C}-7$); 1.8-2.0 $\left(\mathrm{br}, 6 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}\right.$ of cyclopentylidene ring); 1.4 (br, $2 \mathrm{H}, \mathrm{CH}_{2}$ of cyclopentylidene ring); 1.1-1.3 (t, 3 H , CH_{3} of ester); ms: m/z $451\left(\mathrm{M}^{+}, 42 \%\right)$.

Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 63.84 ; \mathrm{H}, 5.58 ; \mathrm{N}, 9.31 ; \mathrm{S}$, 7.09. Found: C, 63.67; H, 5.64; N, 9.18; S, 7.38.

Ethyl 7-Methyl-9-phenyl-2,2-pentamethylene-4-oxo-1,2,3,4tetrahydropyrido $\left[3^{\prime}, 2^{\prime}: 4,5\right]$ thieno[3,2- d]pyrimidine-8-carboxylate (8a).

This compound was obtained as yellow needles, mp 247-248 ${ }^{\circ} \mathrm{C}$, yield 80%, ir: $3400,3200(2 \mathrm{NH})$; 1720, $1650(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 7.0-7.4$ (dd, 4H, ArH's); $6.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}) ;$ 4.0-4.3 (q, 2H, OCH 2); $3.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.6(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; 2.8(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$ at C-7); 1.9-2.2 $\left(\mathrm{m}, 4 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2}\right.$ of cyclohexylidene ring); 1.3-1.8 (m, 4H, ($\left.\mathrm{CH}_{2}\right)_{2}$ of cyclohexylidene ring) 0.9-1.2 (t , $3 \mathrm{H}, \mathrm{CH}_{3}$ of ester); 0.6-0.9(m,2H, CH_{2} of cyclohexylidene ring); ms : m/z $465\left(\mathrm{M}^{+}, 40 \%\right)$.

Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 64.49 ; \mathrm{H}, 5.85 ; \mathrm{N}, 9.03$; S, 6.87. Found: C, $64.28 ;$ H, 5.88 ; N, $9.11 ;$ S, 6.84 .

Ethyl 9-(4-Chlorophenyl)-7-methyl-2,2-pentamethylene-4-oxo-1,2,3,4-tetrahydropyrido[3',2':4,5]thieno[3,2-d] pyrimidine-8-carboxylate (8b).

This compound was obtained as yellow needles, mp 258-259 C, yield 85%, ir: $3400,3200(2 \mathrm{NH}) ; 1720,1650(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): ~ \delta ~ 7.4-7.7$ (dd, 4H, ArH's); 6.7 (s, 1H, CONH); 4.1-4.4 (q, 2H, OCH 2); $3.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; 2.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}-7\right)$; 1.8-2.1 (br, $6 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}$ of cyclopentylidene ring); 1.5 (br, 2 H , CH_{2} of cyclopentylidene ring); 1.1-1.3 ($\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of ester); ms: m/z 455 ($\mathrm{M}^{+}, 32 \%$).
Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}$: C, 60.64; H, 4.87; N, 9.23; S, 7.03; Cl, 7.68. Found: C, 60.53; H, 4.81; N, 9.31;S, 7.00; Cl, 7.50 .

Ethyl 9-(4-Chlorophenyl)-7-methyl-4-oxo-2,2-pentamethylene-1,2,3,4-tetrahydropyrido[$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ thieno $[3,2-d]$ pyrimidine-8-carboxylate (8c).

This compound was obtained as yellow needles, mp 271-272 ${ }^{\circ} \mathrm{C}$, yield 90%, ir: $3400,3200(2 \mathrm{NH}) ; 1720,1650(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): ~ \delta ~ 7.3-7.7$ (dd, 4H, ArH's); 6.9 (s, 1H, CONH); 4.0-4.3 (q, 2H, OCH 2); $3.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; 2.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}-7\right)$; 1.8-2.1 ($\mathrm{m}, 4 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2}$ of cyclohexylidene ring); 1.3-1.7 ($\mathrm{m}, 4 \mathrm{H}$, $\left(\mathrm{CH}_{2}\right)_{2}$ of cyclohexylidene ring); 1.0-1.2 ($\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of ester); $0.6-0.9\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexylidene ring); ms: m/z $469\left(\mathrm{M}^{+}\right.$, 30%).
Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 61.39 ; \mathrm{H}, 5.16 ; \mathrm{N}, 8.95$; S, 6.82; Cl, 7.45. Found: C, 61.25; H, 5.31; N, 8.98; S, 6.70; Cl, 7.76.

Ethyl 2-Chloromethyl-9-(4'-chlorophenyl)-7-methyl-4-oxo-3,4dihydropyrido $\left[3^{\prime}, 2^{\prime}: 4,5\right]$ thieno[3,2- d] pyrimidine-8-carboxylate (9).

Compound $3 \mathbf{c}$ ($1.95 \mathrm{~g}, 0.005 \mathrm{~mol}$) in chloroacetyl chloride (15 mL) was heated on a water bath for 3 hours. The product that formed on cooling was collected and recrystallized from ethanol to give $\mathbf{9}$ in the form of colorless crystals, $\mathrm{mp} 279-280^{\circ} \mathrm{C}$, yield 87%, ir: $3320-3000(\mathrm{NH}) ; 1710,1650(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right.$): δ 7.4-7.8 (dd, 4H, ArH's); 4.2-4.5 (m, 4H, CH2Cl and $\left.\mathrm{OCH}_{2}\right) ; 3.1\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}-7\right) ;$ 1.1-1.4 $\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of ester); $\mathrm{ms}: \mathrm{m} / \mathrm{z} 447\left(\mathrm{M}^{+}, 100 \%\right)$.
Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$: C, 53.69; H, 3.38; N, 9.40; S, 7.15; Cl, 15.65. Found: C, 53.42; H, 3.33; N, 9.68; S, 7.18; Cl, 16.11.

Ethyl 9-(4'-Chlorophenyl)-7-methyl-2-morpholinomethyl-4-oxo-3,4-dihydropyrido $\left.3^{\prime}, 2^{\prime}: 4,5\right]$ thieno[3,2- d] pyrimidine-8carboxylate (10).
Compound 9 ($2.24 \mathrm{~g}, 0.005 \mathrm{~mol}$) in morpholine (5 mL) was heated on a water bath for 3 hours. The reaction mixture was then triturated with ethanol (15 mL) and left to cool. The precipitate was collected and recrystallized from ethanol to give colorless crystals of $\mathbf{1 0}, \mathrm{mp} 275-276{ }^{\circ} \mathrm{C}$, yield 90%, ir: $3200-$ $3000(\mathrm{NH}) ; 1720,1660(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO): $\delta 7.3-$ 7.6 (dd, 4H, ArH's); 4.0-4.3 (q, 2H, OCH_{2}); 3.6-3.8 (t, 4H, $\mathrm{CH}_{2} \mathrm{OCH}_{2}$); 3.3 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$); 2.7 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ at C-7); 2.3-2.5 ($\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}$); 0.9-1.2 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$ of ester); ms: m/z 498 ($\mathrm{M}^{+}, 15 \%$).
Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 57.77 ; \mathrm{H}, 4.65 ; \mathrm{N}, 11.23$; S, 6.43; Cl, 7.10. Found: C, $57.70 ; \mathrm{H}, 4.72 ; \mathrm{N}, 11.35 ; \mathrm{S}, 6.50 ; \mathrm{Cl}$, 7.26.

Ethyl 9-(4'-Chlorophenyl)-2-ethoxymethyl-7-methyl-4-oxo-3,4dihydropyrido [3',2':4,5]thieno[3,2- d]pyrimidine-8-carboxylate (11).

Compound $9(0.9 \mathrm{~g}, 0.002 \mathrm{~mol})$ in sodium ethoxide solution (0.35 g of sodium in 40 mL of absolute ethanol) was heated at reflux for 1 hour. The precipitate that formed on cooling was collected and recrystallized from ethanol as colorless crystals of 11, $\mathrm{mp} 275-276^{\circ} \mathrm{C}$, yield 90%, ir: 3200-3000 (NH); 1720, 1660 (2 $\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right): \delta 7.5-7.9$ (dd, $4 \mathrm{H}, \mathrm{ArH}$'s); 4.8 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$); 4.3-4.6 (q, 2H, OCH_{2}); 3.7-4.0 (q, $2 \mathrm{H}, \mathrm{OCH}_{2}$); 3.2 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ at $\mathrm{C}-7$); 1.1-1.6 (m, 6 H , two CH_{3} groups); ms: m/z $457\left(\mathrm{M}^{+}, 19 \%\right)$.

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 57.76 ; \mathrm{H}, 4.41 ; \mathrm{N}, 9.19$; S, 6.99; Cl,7.65. Found: C, 57.96; H, 4.21; N, 9.25; S, 7.17; Cl, 8.00 .

Ethyl 9-(4'-Chlorophenyl)-2-mercaptomethyl-7-methyl-4-oxo-3,4-dihydropyrido [$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ thieno[3,2- d]pyrimidine-8-carboxylate (12).

A mixture of $9(0.9 \mathrm{~g}, 0.002 \mathrm{~mol})$ and thiourea $(0.15 \mathrm{~g}, 0.002$ $\mathrm{mol})$ in ethanol (20 mL) was refluxed for 3 hours. The product that formed while hot was collected and dissolved in aqueous sodium hydroxide solution $10 \%(10 \mathrm{~mL})$ and then heated on a water bath for 1 hour. The reaction mixture was filtered and the clear filtrate was acidified with acetic acid. The formed yellow precipitate was collected and recrystallized from ethanol-chloroform as yellow crystals of $\mathbf{1 2}, \mathrm{mp} 270-271^{\circ} \mathrm{C}$, yield 91%, ir: 3200-3000 (NH); 2760 (SH); 1720, $1650(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right): \delta 7.5-7.8$ (dd, $4 \mathrm{H}, \mathrm{ArH}$'s); 4.8 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}$); 4.2$4.5\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right) ; 3.1\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}-7\right) ; 1.0-1.2\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of ester); ms: m/z $445\left(\mathrm{M}^{+}, 100 \%\right)$.

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}$: C, 53.93; H, 3.62; N, 9.44; S, 14.37; Cl, 7.86. Found: C, 53.86; H, 3.58; N, 9.69; S, 14.45; Cl, 7.70.

Ethyl 4-Chloro-2-chloromethyl-9-(4'-chlorophenyl)-7methylpyrido [$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ thieno[3,2- d]pyrimidine-8-carboxylate (13).

Compound $9(1.8 \mathrm{~g}, 0.004 \mathrm{~mol})$ in an excess amount of phosphorus oxychloride (20 mL) was refluxed for 4 hours. The cooled reaction mixture was poured into ice-water with vigorous stirring. The separated product was collected and recrystallized from ethanol as yellowish needles of $\mathbf{1 3}, \mathrm{mp} 139-140^{\circ} \mathrm{C}$, yield 90%, ir: $1720(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 7.2-7.6$ (dd, 4H, ArH's); 4.2 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$ at $\mathrm{C}-2$); 3.8-4.1 (q, 2H, OCH_{2}); $2.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at C-7); 1.0-1.2 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$ of ester)); ms: m/z $465\left(\mathrm{M}^{+}, 96 \%\right)$.

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$: C,51.61; H, 3.03; N, 9.03 ; S, 6.88; Cl, 22.56. Found: C, 51.57; H, 3.11; N, 9.17; S, 6.80; Cl, 22.55 .

Ethyl 9-(4'-Chlorophenyl)-7-methyl-4-morpholino-2-morpholinomethylpyrido [$3^{\prime}, 2^{\prime}: 4,5$] thieno[3,2- d]pyrimidine-8-carboxylate (14).

Compound 13 ($0.93 \mathrm{~g}, 0.002 \mathrm{~mol}$) in morpholine (6 mL) was heated on a water bath for 3 hours. The reaction mixture was then triturated with ethanol $(10 \mathrm{~mL})$ and then left to cool. The precipitate was collected and recrystallized from ethanol to give 14 in the form of colorless crystals, mp $157-158{ }^{\circ} \mathrm{C}$, yield 82%, ir: 1720 (C=O) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ nmr (DMSO): $\delta 7.3-7.6$ (dd, 4H, ArH's); 4.1-4.3 (q, $2 \mathrm{H}, \mathrm{OCH}_{2}$); 3.6-3.8 ($\mathrm{t}, 8 \mathrm{H}$, two $\mathrm{CH}_{2} \mathrm{OCH}_{2}$); $3.5(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$); 2.7 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ at C-7); 2.2-2.4 (t, 8 H , two $\mathrm{CH}_{2} \mathrm{NCH}_{2}$); 0.9-1.2 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$ of ester); ms: m/z 567 ($\mathrm{M}^{+}, 23 \%$).

Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{ClN}_{5} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 59.24 ; \mathrm{H}, 5.33 ; \mathrm{N}, 12.34$; S, 5.64; Cl, 6.17. Found: C, 58.97; H, 5.25; N, 12.40; S, 5.91; Cl, 6.10.

Ethyl 9-(4'-Chlorophenyl)-7-methyl-2-mercaptomethyl-4-thioxo-3,4-dihydropyrido[3',2': 4,5]thieno[3,2- d]pyrimidine-8carboxylate (15).

A mixture of $\mathbf{1 3}(0.93 \mathrm{~g}, 0.002 \mathrm{~mol})$ and thiourea $(0.3 \mathrm{~g}, 0.004$ $\mathrm{mol})$ in ethanol (20 mL) was refluxed for 3 hours. The product that formed while hot was collected and dissolved in aqueous sodium hydroxide solution 10% (15 mL). The reaction mixture was heated on a water bath for 1 hour and then filtered. The clear filtrate was acidified with acetic acid whereby a yellow precipitate formed. It was collected and recrystallized from ethanolchloroform as yellow crystals of $\mathbf{1 5}, \mathrm{mp} 254-255^{\circ} \mathrm{C}$, yield 87%, ir: 3200-3000 (NH); 2760 (SH); 1720 (C=O) cm ${ }^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right): \delta 7.4-7.8$ (dd, $4 \mathrm{H}, \mathrm{ArH}$'s); 4.7 (s, 2H, CH2S); 4.1$4.4\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right) ; 3.0\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}-7\right) ; 1.0-1.3\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of ester); ms: m/z $461\left(\mathrm{M}^{+}, 80 \%\right)$.

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}_{3}$: C, 52.06; H, 3.50; N, 9.11; S, 20.81; Cl, 7.59. Found: C, $51.88 ; \mathrm{H}, 3.56$; N, 9.43 ; S, 20.65; Cl, 7.49.

Ethyl 9-(4'-Chlorophenyl)-7-methyl-2-(4'-(4"-chlorophenyl)-3'-cyano-5'-ethoxycarbonyl-6'-methylpyridin-2'-ylthiomethyl)-4-oxo-3,4-dihydropyrido [$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ thieno[3,2-d] pyrimidine-8-carboxylate (16).
To a suspension of compound $\mathbf{1 c}(6.66 \mathrm{~g}, 0.02 \mathrm{~mol})$ and sodium acetate trihydrate ($3.0 \mathrm{~g}, 0.022 \mathrm{mmol}$) in ethanol (50 $\mathrm{mL})$, compound $9(9.0 \mathrm{~g}, 0.02 \mathrm{~mol})$ was added. The resulting mixture was refluxed for 3 hours. The precipitate that formed on cooling was collected and recrystallized from ethanol as colorless needles of 16, mp 261-262 ${ }^{\circ} \mathrm{C}$, yield 82%, ir: 3200-3000 (NH); 2200(CN); 1720 ($2 \mathrm{C}=\mathrm{O}$); $1650(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right): \delta 7.3-7.7(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}$'s $) ;$ 4.2-4.6 (m, 6H, SCH_{2} and two OCH_{2}); 3.2 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ attached to thienopyridine moiety); $2.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ attached to pyridine ring); 1.1-1.4 (m, 6H, two CH_{3} of esters); ms: m/z $743\left(\mathrm{M}^{+}, 12 \%\right)$.
Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{2}$: C,58.14; H, 3.66; N, 9.42; S, 8.61; Cl, 9.41. Found: C, 57.78; H, 3.69; N, 9.32; S, 8.38; Cl, 9.29 .

Ethyl 9-(4'-Chlorophenyl)-7-methyl-2-(3'-amino-4'-(4'-chlorophenyl)-5'-ethoxycarbonyl-6'-methylthieno[2,3-b]pyridin-2'-yl)-4-oxo-3,4-dihydropyrido [3',2':4,5]thieno[3,2- d]pyrimi-dine-8-carboxylate (17).

Compound 16 ($3.72 \mathrm{~g}, 0.005 \mathrm{~mol}$) was suspended in sodium ethoxide solution (0.24 g of sodium in 35 mL of absolute ethanol) and then heated at reflux for 5 minutes. The solid that formed on cooling and acidification with acetic acid was collected and recrystallized from ethanol to give yellow crystals of 17, mp $>360{ }^{\circ} \mathrm{C}$, yield 77%, ir: $3490,3380\left(\mathrm{NH}_{2}\right) ; 1720(2 \mathrm{C}=\mathrm{O}) ; 1650$ (C=O) cm ${ }^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}(\mathrm{DMSO}): ~ \delta 7.2-7.7$ (m, 8H, ArH's); 5.6 (s , $2 \mathrm{H}, \mathrm{NH}_{2}$); 4.1-4.4(q, 4H, two $\left.\mathrm{OCH}_{2}\right) ; 2.7$ (s, 6 H , two CH_{3} attached to the pyridine rings); 1.0-1.2 (t, 6 H , two CH_{3} of esters); ms : m/z $743\left(\mathrm{M}^{+}, 28 \%\right)$.

Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{2}$: C,58.14; H, 3.66; N, 9.42; S, 8.61; Cl, 9.41. Found: C, 58.12; H, 3.82; N, 9.67; S, 8.51; Cl, 9.29.

Diethyl 4,13-Di(4'-chlorophenyl)-2,11-dimethyl-8-oxo-8Hbis(pyrido[$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ thieno)[2,3-b:3',2'-h]pyrimido[1,6-a]pyrimi-dine-3,12-dicarboxylate (18).

Compound 17 ($0.75 \mathrm{~g}, 0.001 \mathrm{~mol}$) in triethyl orthoformate (15 mL) was refluxed for 4 hours. The solid that formed on cooling was collected and recrystallized from ethanol-chloroform mixture as colorless crystals of $\mathbf{1 8}, \mathrm{mp} 318-319 \mathrm{C}$, yield 73%, ir: $1720(2 \mathrm{C}=\mathrm{O}) ; 1650(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right): \delta 9.7$ (s, $1 \mathrm{H}, \mathrm{CH}$ pyrimidinone); 7.4-8.0 ($\mathrm{m}, 8 \mathrm{H}, \mathrm{ArH}$'s); 4.2-4.6 (q, 4H, two OCH_{2}); 3.1 (s, 6 H , two CH_{3} attached to the pyridine rings); 1.0-1.3 ($\mathrm{t}, 6 \mathrm{H}$, two CH_{3} of esters); ms: m/z $753\left(\mathrm{M}^{+}, 25 \%\right)$.

Anal. Calcd. for $\mathrm{C}_{37} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{2}$: C, 58.96 ; $\mathrm{H}, 3.35$; N , 9.30; S, 8.49; Cl, 9.29. Found: C, 59.10; H, 3.17; N, 9.03; S, 8.78; Cl, 9.67.

Diethyl 4,13-Di(4'-chlorophenyl)-2,6,11-trimethyl -8-oxo-8Hbis(pyrido[3',2':4,5] thieno)[2,3-b:3',2'-h]pyrimido[1,6-a]pyrimi-dine-3,12-dicarboxylate (19).

Compound 17 ($0.75 \mathrm{~g}, 0.001 \mathrm{~mol}$) in acetic anhydride (15 mL) was refluxed for 4 hours. The solid that formed on cooling was collected and recrystallized from ethanol-chloroform mixture as colorless crystals of $\mathbf{1 9}, \mathrm{mp} 289-290^{\circ} \mathrm{C}$, yield 92%, ir: $1720(2 \mathrm{C}=\mathrm{O})$; $1650(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right): \delta 7.5-8.0(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH's})$; 4.4-4.7($\mathrm{q}, 4 \mathrm{H}$, two OCH_{2}); $3.3\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ attached to the pyridine ring); 3.2 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ attached to the pyridine ring); 1.9 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3})1.3-1.5 (t, 6 H , two CH_{3} of esters); ms: m/z 767 ($\mathrm{M}^{+}, 100 \%$).

Anal. Calcd. for $\mathrm{C}_{38} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{2}$: C, $59.44 ; \mathrm{H}, 3.55$; N , 9.13; S, 8.34; Cl, 9.12. Found: C, 59.12; H, 3.49; N, 9.24; S, 8.12; Cl, 9.13.
Diethyl 4,13-Di(4'-chlorophenyl)-2,11-dimethyl-8-oxo-6-thioxo-5,6-dihydro- $8 H$-bis(pyrido[$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ thieno)[2,3-b:3', $\left.2^{\prime}-h\right]$ pyrimido $1,6-a$]pyrimidine-3,12-dicarboxylate (20).

A mixture of compound $17(0.75 \mathrm{~g}, 0.001 \mathrm{~mol})$ and carbon disulfide (5 mL) in pyridine (15 mL) was refluxed for 4 hours. The solid that formed on cooling was collected and recrystallized from dimethyl formamide as yellow crystals of 20, mp 297-298 ${ }^{\circ} \mathrm{C}$, yield 76%, ir: $3250(\mathrm{NH}) ; 1720(2 \mathrm{C}=\mathrm{O}) ; 1650(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right): \delta 7.5-7.9$ (m, 8H, ArH's); 4.4-4.7(q, 4H, two OCH_{2}); 3.2 ($\mathrm{s}, 6 \mathrm{H}$, two CH_{3} attached to the pyridine rings); 1.1$1.4\left(\mathrm{t}, 6 \mathrm{H}\right.$, two CH_{3} of esters); ms: m/z $785\left(\mathrm{M}^{+}, 21 \%\right)$.

Anal. Calcd. for $\mathrm{C}_{37} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{3}$: C, $56.56 ; \mathrm{H}, 3.20$; N, 8.92; S, 12.22; Cl, 8.91. Found: C, 56.77; H, 3.22; N, 9.21; S, 12.50; Cl, 9.19.

Diethyl 4,13-Di(4'-chlorophenyl)-2,11-dimethyl-8-oxo-8Hbis(pyrido[3',2':4,5] thieno)[3,2-c:3',2'-g]pyrimido[1,2$c][1,2,3]$ triazine-3,12-dicarboxylate (21).

To a solution of $\mathbf{1 7}(0.75 \mathrm{~g}, 0.001 \mathrm{~mol})$ in concentrated sulfuric acid (5 mL) and glacial acetic acid (5 mL), sodium nitrite solution $10 \%(5 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ over a period of 5 min utes with stirring. The reaction mixture was allowed to stand at room temperature for 30 minutes. The solid that precipitated on dilution with water was collected and recrystallized from 1,4dioxane to give colorless needles of $\mathbf{2 1}, \mathrm{mp} 268-269^{\circ} \mathrm{C}$, yield 79%, ir: $1720(2 \mathrm{C}=\mathrm{O}) ; 1650(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right): \delta$ 7.5-7.9 (m, 8H, ArH's); 4.3-4.6(q, 4H, two OCH_{2}); 3.1 (s, 6H, two CH_{3} attached to the pyridine rings); 1.1-1.3 (t, 6 H , two CH_{3} of esters) ms : m/z 754 ($\mathrm{M}^{+}, 6 \%$).

Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{~S}_{2}$: C, 57.29; H, 3.21; N, 11.14; S, 8.48; Cl, 9.27. Found: C, 57.18; H, 3.25; N,11.23; S, 8.31; Cl, 9.54.

Ethyl 10-(4'-Chlorophenyl)-12-methyl-7H-pyrido[3", $\left.2^{\prime \prime}: 4^{\prime}, 5^{\prime}\right]$ thieno[$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ pyrimido $[1,6-a]$ benzimidazole-11-carboxylate (22).

To a suspension of compound $5(0.92 \mathrm{~g}, 0.002 \mathrm{~mol})$ in triethyl orthoformate (15 mL), few drops of glacial acetic acid was added. The reaction mixture was refluxed for 4 hours and then left to cool. The precipitated solid was collected and recrystallized from ethanol-chloroform mixture as colorless crystals of 22, $\mathrm{mp}>360{ }^{\circ} \mathrm{C}$, yield 91%, ir: 1720 (C=O) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CD}_{3} \mathrm{CO}_{2} \mathrm{D}\right): \delta 9.0(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ pyrimidine); 7.8-8.4 (m, 4 H , ArH's); 7.4-7.7 (dd, 4H, ArH's); 4.1-4.4 (q, 2H, OCH_{2}); 3.0 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ at $\mathrm{C}-11$); 1.1-1.3 ($\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of ester); ms: m/z 472 $\left(\mathrm{M}^{+}, 100 \%\right)$.
Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}$: C, 63.55; H, 3.63; $\mathrm{N}, 11.87$; S, 6.77; Cl, 7.41. Found: C, 63.40; H, 3.65; N, 11.81; S, 6.90; Cl, 7.66.

Ethyl 10-(4'-Chlorophenyl)-8,12-dimethyl-7H-pyrido[3",2":4',5']thieno [$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ pyrimido $[1,6-a$]benzimidazole-11-carboxylate (23).

Compound $5(0.92 \mathrm{~g}, 0.002 \mathrm{~mol})$ in acetic anhydride $(15 \mathrm{~mL})$ was refluxed for 4 hours. The solid that formed on cooling was collected and recrystallized from ethanol-chloroform mixture as colorless crystals of $\mathbf{2 3}, \mathrm{mp}>360^{\circ} \mathrm{C}$, yield 91%, ir: $1720(\mathrm{C}=\mathrm{O})$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{CO}_{2} \mathrm{D}\right): ~ \delta 7.8-8.4$ (m, 4H, ArH's); 7.4-7.7 (dd, $4 \mathrm{H}, \mathrm{ArH}$'s); 4.1-4.4 (q, 2H, OCH_{2}); 3.2 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ attached to pyrimidine ring); $3.0\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ attached to pyridine ring); 1.1$1.3\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of ester); ms: m/z $486\left(\mathrm{M}^{+}, 100 \%\right)$.
Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 64.19 ; \mathrm{H}, 3.94 ; \mathrm{N}, 11.52$; S, 6.58 ; Cl, 7.19. Found: C, 64.20 ; H, 3.88; N, 11.45; S, 6.65; Cl, 7.41.

Ethyl 8,10-Di(4'-chlorophenyl)-12-methyl-8,9-dihydro-7Hpyrido [3",2":4',5'] thieno[$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ pyrimido [1,6-a]benzimida-zole-11-carboxylate (24).

A mixture of compound $5(0.92 \mathrm{~g}, 0.002 \mathrm{~mol})$ and 4 chlorobenzaldehyde ($0.28 \mathrm{~g}, 0.002 \mathrm{~mol}$) in ethanol (15 mL) containing few drops of glacial acetic acid was refluxed for 4 hours. The solid that formed on cooling was collected and recrystallized from dimethyl formamide as yellow crystals of $\mathbf{2 4}, \mathrm{mp}$ 268-269 ${ }^{\circ} \mathrm{C}$, yield 82%, ir: $3400(\mathrm{NH}) ; 1720(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right): ~ \delta 6.9-7.8$ (m, 12H, ArH's); 5.4 (d, 1H, CH at C-7); 4.04.3 (q, 2H, OCH_{2}); $3.6(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}) ; 2.9$ (s, $3 \mathrm{H}, \mathrm{CH} 3$ at $\mathrm{C}-11$); 0.9-1.1 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$ of ester); ms: m/z 584 ($\mathrm{M}^{+}, 18 \%$).

Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$: C, 63.69; H,3.80; N, 9.59; S, 5.47; Cl,11.97. Found: C, $63.91 ;$ H, 3.96; N, 9.68; S, 5.33; Cl, 12.32.

Ethyl 10-(4'-Chlorophenyl)-12-methyl-8-thioxo-8,9-dihydro-7Hpyrido [3",2":4',5']thieno[3',2':4,5]pyrimido[1,6-a]benzimida-zole-11-carboxylate (25).

A mixture of compound $5(0.92 \mathrm{~g}, 0.002 \mathrm{~mol})$ and carbon disulfide (5 mL) in pyridine (15 mL) was heated at reflux for 4 hours. The solid that formed on cooling was collected and recrystallized from dimethyl formamide as yellow crystals of $\mathbf{2 5}, \mathrm{mp}$ $350-351^{\circ} \mathrm{C}$, yield 80%, ir: $3380(\mathrm{NH}) ; 1720(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CD}_{3} \mathrm{CO}_{2} \mathrm{D}\right): \delta 7.7-8.3$ (m, 4H, ArH's); 7.2-7.6 (dd, 4H, ArH's); 4.1-4.4 (q, 2H, OCH_{2}); 2.9 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ at $\mathrm{C}-11$); 1.1-1.3 (t, 3 H , CH_{3} of ester); ms: m/z $504\left(\mathrm{M}^{+}, 100 \%\right)$.
Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, $59.51 ; \mathrm{H}, 3.40 ; \mathrm{N}, 11.11$; S, 12.69; Cl, 6.94. Found: C, 59.54; H, 3.44; N, 11.21; S, 12.36; Cl, 7.16.
Ethyl 10-(4'-Chlorophenyl)-12-methyl-7H-pyrido[3",2":4',5']thieno[$\left.3^{\prime}, 2^{\prime}: 4,5\right][1,2,3]$ triazino[1,6-a]benzimidazole (26).

To a solution of $5(0.92 \mathrm{~g}, 0.002 \mathrm{~mol})$ in concentrated sulfuric acid (5 mL) and glacial acetic acid (5 mL), sodium nitrite solution $10 \%(10 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$ over a period of 5 minutes with stirring. The reaction mixture was allowed to stand at room temperature for 30 minutes. The solid that precipitated on dilution with water was collected and crystallized from 1,4-dioxane to give colorless needles of $\mathbf{2 6}, \mathrm{mp} 307^{\circ} \mathrm{C}$, yield 85%, ir: 1720 ($\mathrm{C}=\mathrm{O}$) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{CO}_{2} \mathrm{D}\right): ~ \delta 7.8-8.4$ (m, 4H, ArH's); 7.47.7 (dd, 4H, ArH's); 4.0-4.3 (q, 2H, OCH 2); $3.0\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at C11); 1.0-1.2 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$ of ester)); ms: m/z 473 ($\mathrm{M}^{+}, 100 \%$).

Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{ClN}_{5} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 60.89 ; \mathrm{H}, 3.39 ; \mathrm{N}, 14.80$; S, 6.76; Cl, 7.40. Found: C, 60.97; H, 3.68; N, 14.85; S, 6.93; Cl, 7.53.

REFERENCES AND NOTES

[1] K. Eichenberger, E. Schweizer and P. Schmidt, U.S. Patent, 2,627,76614; Chem. Abstr., 74, 88638w (1971).
[2] A. Burger, Wiley-Inter. Sciences, 3rd ed., Medicinal Chemistry, New York (N.Y.), 72, 544, 719 (1970).
[3] Z. Shraideh and A.-K.Sallal, Biomed. Lett., 54, 233 (1997).
[4] J. Bompart, L. Giral, G. Malicorne and M. Puygrenier, Eur. J. Med. Chem., 22, 139 (1987).
[5] M. E. Schnute, M. M. Cudahy and A. Scott, PCT Int. Appl. WO, 00,53,610; Chem. Abstr., 133, 222607g (2000).
[6] I. Adachi and Y. Hiramatsu, Jap. Pat., 03,52,890; Chem. Abstr, 115, 71573 (1991).
[7] T. Ooe, M. Sano, H. Kobayashi and M. Kudome Jpn. Kokai Tokkyo Koho JP, 07 53, 562; Chem. Abstr., 123, 256681k (1995).
[8] S. Furuya, N. Choh, K. Kato and S. Hinuma, PCT Int. Appl. WO, 95, 28, 405; Chem. Abstr., 124, 202226t (1996).
[9] N. Cho, M. Harada, T. Imaeda, T. Imada, H. Matsumoto, Y. Hayase, S. Sasaki, S. Furuya, N. Suzuki, S. Okubo, K. Ogi, S. Endo, H. Onda and M. Fujino, J. Med. Chem., 41, 4190(1998).
[10] S. Miki, K. Fukuoka, M. Akita, J. Kawakami, S. Furuya and Y. Ishimaru, PCT Int, Appl. WO, 99, 09, 033; Chem. Abstr., 130, 196644h (1999).
[11] N. Suzuki, H. Matsumoto and S. Furuya, Eur. Pat. Appl. EP, 781,774; Chem. Abstr., 127, 135807e (1997).
[12] S. Furuya, N. Choh, N. Suzuki and T. Imada, PCT Int. Appl. WO, 00,00,493 ; Chem. Abstr., 132, 64179s (2000).
[13] S. Furuya, H. Matsumoto, Y. Hayase, N. Suzuki and T. Imada, PCT Int. Appl. WO, 97,41,126; Chem. Abstr., 128, 13211f (1998).
[14] H. Vieweg, S. Leistner, J. Prantz, N. Bohm and G. Wagner, Pharmazie, 47, 841 (1992).
[15] T. Sohda, H. Makino and A. Baba, PCT Int. Appl. WO, 96,14,319; Chem. Abstr., 125, 114583x (1996).
[16] C. G. Dave, P. R. Shah, K.C. Dave and V. J. Patel, J. Indian Chem. Soc., 66, 48 (1989).
[17] E. Bousquent, G. Romero F. Guerrera, A. Caruso and M. A. Roxas, Farmaco Ed. Sci., 40, 869 (1985).
[18] S. Leistner, G. Wagener, M. Guestscharo and E. Glusa, Pharmazie, 41, 54 (1986).
[19] E. A. Bakhite, A. E. Abdel-Rahman, O. S. Mohamed and E. A. Thabet, Pharmazie, 55, 577 (2000)..
[20] A. E. Abdel-Rahman, E. A. Bakhite, O. S. Mohamed and E. A. Thabet, Phosphorus, Sulfur and Silicon, 166, 149 (2000).
[21] A. E. Abdel-Rahman, E. A. Bakhite and E. A. Al-Taifi, J. Chin. Chem. Soc., 49, 223 (2002).
[22] A. M. Abd El-Fattah; Phosphorus, Sulfur Silicon Relat. Elem., 156, 53 (2000).
[23] E. A. Bakhite, J. Chem. Res. Synop., (M): 500 (2000); (S): 1201 (2000).
[24] V. F. Vaidya and Y. S. Agasimundin, Indian J. Chem., 20B, 780 (1981).

